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Abstract

A unified theoretical description of physical adsorption occurring at gas/
solid and liquid/solid interfaces with energetically heterogeneous surfaces is
presented. It is based on a qualitative similarity of the adsorption interactions
of all mixture components with an adsorbent surface. This idea is applied to
predict adsorption equilibria in multicomponent systems by using parameters
characterizing single-component adsorption data. Theoretical considerations
are illustrated by suitable model calculations. The usefulness of the
description is confirmed by satisfactory results obtained to predict adsorption
equilibria in the selected gas/solid and liquid/solid systems.

Introduction

The integral form of the overall adsorption isotherm is most
often used in the theory of physical adsorption on het-
erogeneous solid surfaces. For adsorption of the ith pure gas
on a heterogeneous solid surface this integral may be written
as follows [1, 2]:

0, (p) = f 0, (p; €) xe) de; (0))s

Ai

where ©, , and @, , are the overall and local surface coverages,
respectively; p, is the equilibrium pressure of the ith pure gas;
x:(€,) is the distribution function of the adsorption energy ¢,;
A, is the integration region. Equation (1) may be easily
extended to solute adsorption from dilute liquid solutions by
replacing the pressure p, by a solute concentration c,.
Moreover, we should remember that in the case of solute
adsorption ¢, denotes the adsorption energy of the ith solute
expressed with respect to the solvent adsorption energy [3, 4].
Equation (1) may also be transformed to a slightly different
form describing adsorption from binary liquid mixtures

+ Permanent address: Institute of Chemistry, M. Curie-Sklodowska
University, 20031 Lublin, Poland.
1 For nomenclature used in this paper see p. 183.

containing the ith and jth components over the whole
concentration region; then, we have {1, 4, 5]

X, t(xij) = J . x?,l(x::ja 611) x: (eij) deij 2

A

To obtain equation (2) from equation (1), the overall and
local surface coverages ©, , and ©, , should be replaced by the
mol fractions of the ith component in the surface phase, x],
and x; ,, respectively; the pressure p, should be replaced by
the ratio of the mol fractions of the ith and jth components
in the bulk phase

xi; = xj/x; (where x\+x; = 1)

the adsorption energy ¢, should be replaced by the difference
in the adsorption energies of both components ¢, = ¢,—¢;.
Since in equation (2) the distribution function depends on the
variable ¢, which is the difference between adsorption
energies ¢, and ¢,, we added the asterisk at the symbol y;, to
distinguish this distribution from that appearing in equation
(1), which depends on the adsorption energy ¢, only. Similarly,
we distinguished the integration regions appearing in
equations (1) and (2). '

In the case of adsorption from n-component gas mixtures
on heterogeneous surfaces (or similarly in the case of n-solute
adsorption from dilute solutions) the overall adsorption
isotherm is expressed as follows [1, 6].

Oim: = f ...J(")m)l(p, e)xe)de fori=1,2,...,n 3)
Al

where ©,,, and ©,,, are the relative overall and local
adsorptions of the ith component from an n-component
mixture; p = (p,,Py.-»Pn)s &= (€€1,€y,..-,€,) and n = (1,
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2,...,n) are the n-dimensional vectors; A, = A; XA, X,..., X
A, is the n-dimensional integration region; and y(¢) is the n-
dimensional distribution function of & An analogous
equation for equation (3) may be written for adsorption from
n-component liquid mixtures of non-electrolytes [1, 4, 6]:

Xime = IA* in(n)l (n> €2) X* (8,) de,, C))
where xj,, and xj,, are the overall and local mol fractions
of the ith component in the n-component surface phase; x’,
= (X{> X -+ > X1, n) AN &, = (€1, €205 -, €4y, ) ATE (n—1)-
dimensional vectors, in which x!, = x!/x!, and ¢, = ¢,—¢,
(thus the nth component has been chosen as a reference
component); x*(¢,) and A} denote the (n-1)-dimensional
distribution function and integration region, respectively.

Equations (3) and (4) were solved analytically only for
some specific assumptions concerning the form of the energy
distribution function. Roginsky and Todes [7, 8] considered
binary gas mixture adsorption assuming different depen-
dences between the adsorption energies of both components.
First, they discussed a case of the linear dependence between
adsorption energies ¢, and ¢,, ie. €, =a'e,+b (a,b arc
constants). Then, the integral equation takes the following
simplified form [1]:

O, = J ;2 [€15 €x(€1), P] Xi(e)) de; for i=1,2 &)
Al
They also studied the case of a lack of correlation between

the adsorption energies

0,4, = j J 0,01 (6, P) X:1(€1) X2(€2) de, de, (6)
Al A?

Both equations were solved using the condensation app-
roximation method [7, 8]. Glueckauf [9] investigated the
linear dependence between adsorption energies of both
components assuming Freundlich (exponential) distribution
function with minimum energy equal to zero. He compared
exact numerical solutions with some analytical isotherm
approximations. A similar approach to the above one was
presented by Tompkins and Young [10] and Young and
Crowell [11] for the Freundlich-type distribution functions
with equal exponents.

Jaroniec, in a series of papers summarized in the review [6],
proposed some analytical solutions of equations (3) and (4)
after assuming the constancy of the differences of adsorption
energies ¢, and ¢, i.e. d(¢;—¢,)/0¢; =0 (i=1,...,n—1) over
the whole surface.

All the above approaches showed the possibility of
prediction of multicomponent adsorption equilibria by using
suitable single-component adsorption data. In the adsorption
literature [12-17], other semiempirical or thermodynamical
methods of adsorption prediction were also proposed. These
approaches do not practically distinguish the energetic
heterogeneity as a separate effect playing an important role in
the adsorption process.

In the present paper, a new method of description of
multicomponent adsorption systems involving energetic
heterogeneity effects is proposed. It is based on the
assumption that the differences in the adsorption energies of
components vary in an ordered way. It demonstrates the
possibility of expressing the integral equations (3) and (4) in
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the form of a single integral which may be easily solved
analytically or numerically. It also enables prediction of the
multicomponent adsorption equilibria by using only the
parameters characterizing suitable simpler adsorption
systems, e.g. single-gas adsorption (single-solute adsorption)
systems. The theoretical discussion is illustrated by several
model calculations. Moreover, the adsorption data of two
binary gas mixtures and two binary liquid mixtures were
predicted by means of the single gas and vapour adsorption
parameters, respectively. Additionally, simple relationships
between Henry’s constant and the energy distribution
function are discussed including the temperature dependence
of the heterogeneity parameters characterizing this dis-
tribution.

Theory

(A) General considerations dealing with the integral equation
for gas and liquid adsorption

Let us assume that an n-component ideal gas mixture (all
molecules have identical molecular sizes; molecular inter-
actions are neglected in the case of gas phase and are
identical in the case of liquid phase) is in contact with an
energetically heterogeneous solid and any two molecules of
the ith and jth components (i, j =1, 2,...,n) adsorb on any
surface site ‘** with the energies ¢} and ¢} which are related
in the following way:

EF E}
F* = f x{E)dE; = J'
Ei,min Ej,m(n
Fe<0,1)> )

In the above, E is the reduced adsorption energy (introduced
for simplicity of further formulas) and F is the integral
(cumulative) distribution function in a simple way connected
with the differential distribution y:

x{E)dE;; E=¢/RT;

dF
dE
To simplify mathematical notation we use the same symbol
x for denoting the functions x(¢) and y(E). F(E) represents
the fraction of adsorption sites with energies lower than E. In
the case of strongly heterogeneous gas/solid systems, when
the condensation approximation method may be used to
calculate the energy distribution [7, 8] and the pressure p
satisfies the following relationship @,(E, p) = 0.5, the quantity
[1—F(E)] is equal to the global surface coverage ©,(p). The
function F shows a possibility for calculating the relationship
between the adsorption energies of different components
referring to the same solid surface:

E, = E(F); Eszj(F) and Eszj[F(Ei)];
2 n ik ) ©)

Thus, we may obtain the analogues of the integral equations
for gas adsorption [equations (1) and (3)]:

= x(E) ®

ij=1,

9, = Jl 0, [p;, E(P)]dF (10a)
and
Oy = J O [P, E(F)]dF (105)




where E = (E, E,,...,E,)and E(F) = ¢,/RT fori=1,2,...n.
In this way we simplified the multidimensional integral
fequation (3)] to a single-dimensional integral [equation
(104)] which is fully described by a local isotherm Q,,,,, €.8.
the multi-Langmuir equation

K, exp(e;/RT) p; K, exp (E) p,

®i(u)l = n - n
1+ X K, exp(e;,/RT)p, 1+ X K exp(E)p;
j=1 j=1

(1

and n functions E(F) identical with these for single gas
adsorption. In equation (10), K, for j=1, 2,...,n are the
entropy factors [6]. Each energy distribution function is
characterized by two fundamental parameters: the mean
energy E = &/ RT and energy dispersion ¢ = ¢,/ RT, relating
to the inhomogeneity of the adsorption system. They are
defined as follows:

E=J E‘X(E)dE=JE(F)dF (12a)

A 0

and

o’ = f (E—E)x(E)dE = Jl [E(F)—E|*dF (12b)
A 1}

After introduction of a new variable z = E(F)— E and local
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where K, is the equilibrium constant connected with the mean
adsorption energy E:

K, = K,; exp(E) = K,; exp (¢/RT) (14)

In Table I, the analytical forms of the functions F(z) and z(F)
are shown for several known energy distribution functions.
The expressions for energy dispersion o presented in the same
table are exact formulas, only in the case of Toth and
generalized Freundlich equations [6] these formulas are
approximate ones. To show the differences and resemblances
between the differential (y) and integral (F) forms of the
energy distribution, both these forms are shown for the
symmetrical LF-type energy distribution function [18] (Table
I) vs. z= E—E (Fig. 1A, C). Moreover, the dependences of
the local surface coverage for single gas adsorption [equation
(11)] vs. z (Fig. 1B) and vs. F=F(E) (Fig. 1D) are
plotted. The dashed areas in Fig. 1 A, D refer to the global
surface coverage ©,. However, the dependences o vs.
(m™2—1)t (Fig. 2A) and ¢® vs. (m"2—1) (Fig. 2B) for LF, T
and GF energy distributions (see Table I) are drawn. In the
case of LF function, their plots are linear; on the other hand,
for T and GF distributions the linear approximations are also
satisfying.

The above considerations can be extended to the case of
adsorption of an n-component liquid mixture. For the local
isotherm equation of the Everett type [14]

Langmuir equation (11) in the integral equation (105), we K, x. K, x.,
obtain Ximt = = ; i=1..,n (159
Elgx; 1+2anxjn
1 K,p,explz(F _ = -1
Oy = J 52BN gp ()= E(F)-E, where
1+ X K,p, (F
Z %ops expleA Pl (13) Ky, = K/K, = (Ky/Ku) X (E,~E,); %y = xi/x,  (15b)
Table 1. Differential energy distribution functions y(E) and corresponding functions F(z), z(F) and dispersion values
Code Distribution function y Fz) z(F) o
2/(00? i _Z _
G @) exp[—2%/(20%)] [l +sign (z) erf( \/20')]/2 o
R m-exp (mz)/[exp (mz)+ 1]* exp (mz)/lexp (mz) + 1] In[F/(1-F))/m %i
m
Sq  (I/AE); ze(—AE/2,AE/2) [z/AE+Y AE-(F-% AE/2v/3)
k P, =1/k; z,.=AE(i—1-l) Ee(ﬂ,f) for AE(i—l) for AE e+l
k—1 2 k k k—1 2 24/3A k—1
i=1,2,...,k z‘=AE(li—ll——% Ee((i—1)/k;i/k]
F mexp(—mz—1); ze(—1/m, o) [1—exp (—mz—1)] [-In 1-F)—1]/m (1/m)
LF i . - R sin(zrm) ] 1 { sin (mmF) } 7 y(1—m?)
(1/m) sin (am) exp (mz)/ Wm. z) mm [exp (—mz)+ cos(mm) m " sin [rm(1 — F)] V3 m
GF  (1/n) sin(wm)/[exp(E)—1]" — _ _va-m’)
m
E=E—E, >0
T (1/m)sinCy/m)/[W(m, E)Jem — — o 13 Y A=)

5 = cos™! {cos (mm) exp (mE")+ 1}
. [W(m, B
"= E—E,

m

Distribution function codes: G, Gaussian; R, Rudzinski’s [19]; Sq, continuous square-shaped; k, k-centred square-shaped; F, Freundlich
(exponential); LF, Langmuir-Freundlich [18]; GF, Generalized Freundlich [18]; T, Téth [18].
P, probability; o, m, AE, heterogeneity parameters; AE = E_, —E,_, ; E,—characteristic energy; W(m,x) = [exp (2mx)+2 exp (mx) cos (mm)+1];

erf — probability integral.
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(B) Prediction of adsorption equilibria in multicomponent

The new isotherm [equations (13) and (164)] describing
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Fig. 1. Model curves for the Langmuir—Freundlich energy distribution
function calculated according to eqns. (1), (7), (8) and (11) for Kp =1 and
heterogeneity parameter m = 0.5. (A) Distribution function y(z = E-E)
( ) and x(2):0,p,2) vs. z (~————— ). (B) Dependence ©/(p,z) vs. z.
(C) Integral distribution F vs. z (—). (D) Dependence of the local coverage
@, vs. F(—). The dashed areas in (A) and (D) refer to the global coverage
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Fig. 2. Energy distribution dispersion. (A) o vs. (m2—1); (B) o? vs.
(m~2-1); for LF ( ), Toth (———-) and GF (-.-.—.-) distribution
functions (see Table I); m is a heterogeneity parameter.

we obtain

' K exp[z(F)lx;

s

Xime = o dF

* ¥ K, exp[z(F)] x;

j=1
1 K ) 4
_ j K, iXp E20) Eo (16)
0 1+ 2 K]‘n exp [Zjn(F)] x;n
1

where

an = Ki/Kn; Zjn(F) = Zj(F)_Zn(F);
(16b)

The overall isotherm (equation (164a)] is expressed by the
parameters K, and functions z(F) characteristic for ad-
sorption of single components (gas or vapour) or by suitable
quantities for adsorption of the binary solution ‘j+n’.
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adsorption from n-component mixtures are fully charac-
terized by mean energy constants K, and characteristic
functions z(F) = E,—E, obtained from single adsorption
data. It gives the basis for using equations (10), (13) and (16)
for simple prediction of mixture adsorption from the suitable
experimental single gas or vapour adsorption data. Ad-
ditionally, the adsorption from a multicomponent liquid
mixture over the whole concentration range can be predicted
by using the suitable binary liquid adsorption data [equation
(16)]. However, this method requires the correct choice of the
reference component ‘n’. It should have the highest or the
lowest value of energy dispersion o,. In this case, all
parameters of the binary liquid mixture ‘j+n’,j=1,...,n—1,
can be directly used in equation (16). However, the problem
of special selection of the reference component ‘n’ should be
discussed more extensively. Prediction of adsorption by
means of the single gas or vapour adsorption data does not
need the choice of a reference component, but its exactness,
especially in the case of adsorption from multicomponent
liquid mixtures, is not good enough. The results are loaded
with errors of subtraction of two similar high energy values
E,—E, and change of the bulk phase physical state (the
heterogeneity parameters can be found exactly enough).
Thus, even a single point measured experimentally in a
multicomponent mixture can be helpful in K, constants
correction.

Equation (16) may be easily adapted to describe and
predict multisolute adsorption from dilute solutions,
especially, if the solutes are organic and water is a solvent;
then, water is a reference substance: ‘w’ = ‘n+1’°. The mol
fraction of water may be assumed to be constant (x!, ~ 1),
and the mol concentration of the solute °j° in aqueous
solution is

amn

where ¢, is the mol concentration of water. Thus we
obtain

— 4l
¢ = X;c,

) _ f ! ¢ Ki(w) CXp [Zi(w)(F )]
imt — n —
* 14 3 ¢; K €XP [2;0y (F)]

=1

dF (18)

where the constants X, = K, /¢, and function z,,,,(F) = z,,,
(F) are characteristic for single solute adsorption:

6,,= f Ki(ﬁ)) C; €XP [Z400)(F)] dF
N o 14K ¢, €XP [z, (F)]

Let us now consider the specific case of adsorption from an
n-component gas mixture in which k£ components have very
similar adsorptive properties [their distributions z(F) are
identical and equal to z(F), whereas their mean energies E,
are different] and the other components adsorb with constant
energies [z(F) = 0]. Thus single gas adsorption isotherms may
be written as follows:

(19)

®,,=G,K,p); i<k and G, denotes a function of K;p;
0)

®1,t=_ipt/[1+lztpi]; nzizk+l1; KizKi




and a multicomponent adsorption isotherm is expressed by
means of the parameters characteristic for single gas
adsorption:

K:p, g - .
G)i(n)t=k B G, Zijj 1+‘E ijj ; i<k
2 ijj j=1 j=k+1
=1
(21)
k j—
K Z K;p;
Gt(nn:—"liipi—[l Gz( = )], izk+12n
1+ X K;p; 1+ I Kp,
J=k+1 J=k+1

Analogous results were obtained by Jaroniec [20] and Jaroniec
et al. [21] These considerations can be easily generalized to
adsorption from multicomponent liquid mixtures and dilute
solutions.

(C) Special relations for adsorption from binary mixtures

The case of adsorption from binary liquid mixtures and
adsorption of two-component gas mixtures under conditions
of almost full surface coverage is especially interesting (O, ,,,
+0,,,, ~ 1). The equilibrium in such systems is fully
described in terms of adsorption energy differences [equation
(164) for n = 2 and equation (13) for Kp,, Kp, > 1 and n =
2]. Thus we can find dispersion o, of the adsorption energy
difference E,, = E,—E, (z,, = z,—2,):

ot = fl 25(F) dF = (0, —0p) +2(1—ryp)) 0, 0, 22a)
Fyp = Jl [@] [@] dF (22b)
ol 01 oy

where ry, is the correlation coefficient of the distributions y,
and y,. If a linear dependence between the energies E, and
E, exists, we obtain

z,(F) = zy(F) 0,/ 0y; (23)

As it results from equations (22) and (23), the dispersion (or
width) of the adsorption energy differences distribution
function is equal to a positive value obtained by subtracting
dispersions of linearly correlated energies £, and E,. In Fig.
3, the model discrete (Fig. 3A) and continuous (Fig. 3B)

ne=1; o, =lo,—0,

pE) O2A T Y w2
ol l l U LII ll”hlL ]““!!{
s bcdefgh .. YT
& E; Eﬂ
X(E) (B ‘:’\\
1o
I ’~
Lo\ ,’I \\\
RN I
/// \\\ ,' \\\ II \\
/ \\\ /I ‘\\ // \.\ _
a . h E1 ; ..... h Ez e S Eg-

Fig. 3. Model energy distributions for single-component adsorption (‘1’ and
*2°) with corresponding distributions of adsorption energy differences E,,
for binary mixture ‘ 1 +2’; correlation coefficient r;, = 1. (A) Discrete energy
distributions P(E) (P = probability). (B) Continuous energy distributions
x(E). Small letters a, b, ..., h denote types of adsorption sites.
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energy distributions are drawn for the single components ‘1’
and ‘2. These distributions produce the suitable distribution
functions of the differences of the energies E,—E, = E,,,
which are also presented. The last functions describe
properties of the adsorption system with the binary mixture
‘142’ and refer to the positive correlation of the adsorption
energies E, and E, [z,(F) and z,(F)]. According to many
authors [6, 7, 10, 11, 20] the situation when o, = o, and r,,
=1 (i.e. heterogeneity parameters are the same) is very
frequent. Thus, o, = 0 (z,, = 0) and the competitive mono-
layer adsorption may be described in terms of the mean
differences only:

X/ %o = K12 X1 (24a)
or
®1(2)z/®2(2)c = _12P1/p2 (24b)

In the case of gas adsorption, even if a monolayer is not filled
up, the simple relation [equation 24b)] is still kept (of course
for a,, = 0) and individual global coverages can be described
by equations (20) and (21). However, when we consider
adsorbates of extreme opposite properties (for example,
acidic and basic or the like,) it may happen that an opposite
correlation of z,(F) and z,(F) is valid:

z,(F) = —z)(F)o,/oy; 1p=—1; o3=0,%0, (25)

The knowledge of heterogeneity parameters of single gas
(or vapour) adsorption data make the calculation of
heterogeneity parameters for mixed adsorption possible.
When both mixture components are of the same type, for
example, adsorption of these components is characterized by
the Freundlich energy distribution functions with het-
erogeneity parameters m, and m,, we have (see Table I)

re=1;0, =0,—0, (26a)
1/m,=|1/m,—1/m, (26b)
or for LF, Té6th or GF distributions (ry, >~ 1)

Oy = o, — 0y (27a)
(myj = D} o |(my* — 1) — (my* — 1) (276)

The above equations give simple relations between het-
erogeneity parameters of single and mixed adsorption data.
However, for adsorption of two substances of chemically
dissimilar nature it may be necessary to describe them by
different-type distribution functions, for example the Fre-
undlich and Rudzinski’s distributions. Thus, a correlation
coefficient is not equal to unity and o, # |o; —0o,|. In this
case, the formulas analogous to equations (265) and (27b)
are only crude approximations because the resulting dis-
tribution y¥ (E,;,) [equations (8) and (165)] is of an inter-
mediate character between the functions y,(E,) and yx,(E,).

The values of the correlation coefficient r,, for some
theoretical distribution functions are shown in Table II.
However, in Fig. 4 the values of r, for LF and R (solid line)
and LF and G distributions (dashed line) are drawn vs. the
heterogeneity parameter m. It is evident from Table 1I and
Fig. 4 that the quasi-Gaussian distributions R and LF are
very similar to the Gaussian (G) one (especially in the case of
small m values referring to great heterogeneities). Besides, the
other symmetrical distributions, like continuous square-
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Fig. 4. Correlation coefficient r [equation (22b)] drawn for LF and G

(-——-)and LF and R ( ) distributions vs. heterogeneity parameter of LF

distribution (m). Correlation coefficient for R and G distributions r j is

indicated.

Table II. Correlation coefficients r,, [equation (22b)] for
some chosen distribution functions (codes are the same as in
Table I)

Code F R G Sqg k
F 1 m/3/6~089 — 4/3/2~086 —
G — ~ 0.996 1 — —

Sq V3/2~086 3/m~0955 — 1

J-%)

shaped or k-centred square-shaped ones, can be used to
approximate the quasi-Gaussian distributions. For example,
when we have adsorption data in a narrow range of surface
coverages, there is no distinct difference between the global
coverages for different kinds of symmetrical distributions
with the same mean energy and dispersion.

(D) Some remarks on prediction of adsorption for mixtures
of components showing certain non-correlation of adsorption
energies

The previous considerations concerned a model mixture after
assuming a functional dependence for the adsorption energies
E; = {E,) defined by equations (7)—(9); however, the factual
dependence for the experimental system may be more or less
of the probability character. In the case of a complete lack of
energies correlation, the multivariate distribution in equations
(3) and (4) will be defined as a product of independent
functions:

X(&) = X1(&1) X2(£2) - Xn(&,) (28)
and equation (10b) will take the form
1 1
Oim: = J' o J Oy [P E\(F)...E (F)]dF, ...dF, 29)
0 o

Equations analogous to equations (3) and (4) with the
distribution function 28 were discussed for binary gas
mixtures by Roginski and Todes in terms of condensation
approximation [8] and by Jaroniec for adsorption from an n-
component gas mixture with local Jovanovi¢ behaviour and
Guassian distributions y,(¢,) [22]. The case of two-component
dilute solution and bivariate Gaussian energy distribution
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function with the correlation coefficient re(0, 1) was in-
vestigated and tested experimentally by Mueller e? al. [23, 24].
They found a positive correlation (r close to unity) in most
cases studied, concluding also that their model gives
distinctively better prediction than IAS theory [13, 16].

We must underline here that values r = cov (x, y)/(o, o,)
less than unity do not require the probabilistic character of
relation between two physical quantities. For mixed ad-
sorption it can also mean that the obtained distribution
functions, isotherm equations or data used are approximate
or the dependence E,(E,) is curvilinear. Additionally, a
certain non-correlation can be a result of other appr-
oximations and assumptions made. However, in most cases,
energy distributions are well correlated [many papers [6, 7, 10,
11, 20, 23, 24] deal with the data and theoretical equations
fulfilling equations (20) and (21) or (24)]. The effect of energy
distribution functions non-correlation can be examined by
investigating adsorption data of binary gas and liquid
mixtures [equations (22)-27)]. If single-component dis-
tribution functions have very similar heterogeneity para-
meters (and dispersions o, 0,), then the dispersion ¢, should
be very sensitive to changes of the correlation coefficient ry,:

(30)

Comparing the heterogeneity parameters predicted and
found from the mixed data, we can determine whether the
adsorption energies are actually correlated or not.

In Fig. 5, the problem of the adsorption energies correlation
is shown for a competitive adsorption model for a binary
mixture. Fig. 5A represents z,(F) (solid line) and z,(F)
(dashed line) observed in single-component systems, whereas
Fig. 5B shows z,,(F) (solid line) calculated according to the
assumption that K = F, = F for each site on the surface (the
complete correlation of adsorption energies of components
‘1> and “2°). However, in Fig. 5C the single component
energies are plotted vs. joint scale F = F, (F, = F,) for a model

oy, = [(0, =)’ +2(1 —=ryp) 0y ‘72]% ~[2(1 =ry) oy 0'2]%

7 F=R

t
ZylF)

0

0 F 10 F 1

Fig. 5. Model energy characteristic curves z(F) for adsorption of single
components ‘1’ and ‘2’ and competitive adsorption of mixture ‘1+2’. (A)
Fully correlated z,(F) ( ) and z,(F,) (-——-). (B) Energy difference
characteristic curve z,,(F) for the case of correlated single component
distributions. (C) Partially correlated zy(F = F) (——--) and z,(F=F)
( ) with actually the same distribution F(z,) as for z,(F]) (5A). (D) Curve
2,5(F = F,) (—) for partially correlated adsorption energies (5C) and
observed in the mixture ‘1+42°; z,,(F’) vs. rearranged F’ scale (- - - ).




non-correlation, whereas in Fig. 5D the resulting curve z,
(F) = z,(F)—z,(F) (solid line) is drawn. In Fig. 5D the
function z,,(F’) (dotted line) is plotted vs. the rearranged F’
scale (to give a monotonous course of z,,). It must be
emphasized that single-component distributions z,(F) and
z,(F = E)) are observed experimentally as actually identical.
Moreover, a lack of correlation between energies E, and E,
observed in Fig. 5C and D is a specific feature of the model
system.

Summing up the theoretical discussion, it ought to be
remarked that the new theoretical description of adsorption
and its application for predicting the multicomponent
adsorption equilibria has a universal character. We will use
the following abbreviation for this method: ‘Subtraction of
adsorption energy dispersions’ —~ SAED. In comparison with
other approaches dealing with energetic heterogeneity, it
does not restrict types of energy distribution functions for
single components which may be used in multicomponent
adsorption prediction. The general relationships proposed
are rather simple in usage. This method also creates the
possibility of simplifying these equations for some special
cases. However, its inconvenience lies in the assumption of
ideality of the bulk phase and differences in molecular sizes.
It may be expected that taking both effects into account
would distinctly improve prediction quality. Additionally,
the method makes it possible to explain the Henry constant
relation to energy distribution function and to discuss
temperature dependences of heterogeneity parameters (see
Appendices A and B). It is also possible to check the quality
of approximation of the continuous distribution of ad-
sorption energy by a discrete function (see Appendix C).

Results and discussion

To show the advantages and disadvantages of the proposed
prediction method, we analysed adsorption of binary gas
mixtures and two binary liquid mixtures on heterogeneous
solids by using the single gas and vapour adsorption data,
respectively.

The data on ethane, ethylene, propane and propylene
(pure gases) adsorption on Nuxit Al charcoal [25-27] (T =
293 K) were analyzed by using the semi-graphical methods
developed in a series of papers {18, 28-30]. The Lang-
muir-Freundlich isotherm equation [6] was found to be the
best approximation of the data

a; = am,i{(Kipi)mi/[l + (Kipi)m{]}

where g, and a,, ; are the adsorption amount and monolayer
capacity of the ith gas, respectively, whereas m, is the
heterogeneity parameter [see Table I and equation (275)].
The results of optimization are presented in the first part of
Table III and in Fig. 6 A. It is obvious from Table III that
ethane and ethylene as well as propane and propylene have
very similar monolayer capacities and heterogeneity par-
ameters. In Fig. 6A, the linear plots of the Langmuir-
Freundlich [equation (31)]

(€3))

a, = am,i—ai/(Kipi)mi

are presented for ethane (black triangles and a solid line),
ethylene (white triangles and a solid line), propane (black
points and a dashed line) and propylene (white points and a
dashed line). Though the linear plot predicted by equation

32
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(32) is very sensitive to every change in the theoretical
equation (31), a very good linear correlation is obtained.
Similarity of a,, , and m, values made it possible to use the
mean values of a@,, = 0.5 (a,, ,+a,, ), m = 0.5 (m;+m,) and
K,, = K,/K, in mixture adsorption prediction. Moreover,
the values m,, obtained from the parameters m, by using
equations (27 a) and (27b) are very close to unity (Table III);
it confirms the possibility of applying one common dis-
tribution with 7 for both mixture components [see equations
(20), (21)] instead of the full form of integral equation (13)
with slightly different z,(F) and z,(F) functions. Thus, the
multi-Langmuir-Freundlich equation in its linearized form
was applied to the mixture data analysis (for simplicity we
omitted the subscripts ‘(2)¢’ in a, symbols):

a,+a, = a—m_(a1+a2)/[Kl(pl+K21p2)]ﬁ (33)

The results of prediction are shown in Fig. 6 B. Theoretical
lines are compared with the experimental points (triangles
and a solid line for ethane (1) + ethylene (2) mixtures, circles
and a dashed line for propane (1) + propylene (2)
adsorption). A good agreement is observed, whereas the
visible discrepancies seem to be caused by the difference in

Table II1. Parameters of the Langmuir—Freundlich isotherm
[equation (31)] for single gas adsorption on Nuxit Al
(charcoal) at 293 K [20-22]

The parameters for adsorption of gas mixtures predicted from single gas

adsorption data and obtained from binary gas experimental data
[equation (34)].

LF equation (31) LF equations (33) and (275) Equation

Single gases Predicted for mixtures 34)
Adsorbate  a,, m; InK, a, m Ink,, m, kK, m,
Ethane (1) 152 062 —6.78 153 635 030 0995 —-0.42 0.99
Ethylene (2) 154 0.65 —7.08 ’ ’ ' ’ ’
Propane (I) 122 054 —4.26 155 456 009 0988  0.05 1.00
Propylene (2) 128 0.58 —4.35
a(cm®STP/g), p (Torr).
(0, +ay)

100

1 0
0 1
(ay+a,)/(py +Kyyp))"

Fig. 6. Linear plots of Langmuir-Freundlich equations (32) and (33) for
adsorption on Nuxit Al charcoal [25-27] at 293 K; a(cm®STP/g) and p
(Torr). (A) Single gas adsorption of ethane (A), ethylene (A) (—),
propane (@) and propylene (Q) (-——-). (B) Mixed-gas adsorption of
ethane (1)+ethylene (2) (A, ——) and propane (1)+ propylene (2) (O,
———).

a/pm
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propane and propylene molecular sizes (see a,, ; values in
Table III). Additionally, to confirm the validity of assumption
referring to the mixture components adsorption energy
correlation [equations (7)—(9) (then m,, ~ 1 and equation
(27 a, b) are followed), we plotted the mixture data according
to the linear form of equation (245), taking into account a
certain dispersion of the energy difference distribution [31}:

(34

The above equation is approximate; however, it is fully
justified for the higher total coverages [(a, +a,)/a,]), when
only the competitive effects are important. The results
presented in Fig. 7 and Table III fully confirm the validity of
our assumptions, the values m,, are almost the same as
predicted. The constants K;, = 1/K;, for mixtures differ no
more than 15% from the predicted values of K, = K,/K,.
This difference may be caused by small differences in
molecular sizes (K}, ~ K,,a,, ,/a,, ,) and by optimization
errors.

In Fig. 8, the effect of the model non-correlation of
adsorption energies for binary mixture components is
presented for experimental binary data from Table III. It is
evident that even small deviations from the full linear
correlation (r,, = 1) cause a strong decrease of the het-
erogeneity parameter m,,. For r,, <1, a very strong
heterogeneity can be observed, which confirms that for the
experimental systems analysed the linear correlation is actual
[see Table III, Fig. 7 and equation (34)].

Let us now analyse the single vapour and binary liquid
mixture adsorption data of benzene and tetrachloromethane
(CCL,) on aerosil 303 K [32] and on macroporous silica gel
KSK at 293 K [33]. First, we determined monolayer capacities
for vapour and liquid mixture adsorption by using different
methods. The results are presented in Table IV. In the case of
systems with aerosil, we compared the a,, ; values for BET
equation [11] with the results obtained by using the slightly
modified Lopez-Gonzales and Deitz (LGD) multilayer
isotherm equation [11, 34]:

In(a,/a,) = my, In K, +my, In(p,/p,)

_ 1_(xi)2/2 i Kz,ixt/(l_xi) . _
o= o[ T [ [ =i 09

where p, , is the saturation pressure and K, ; is the constant
connected with the usually used K, constant (K, = K,p, ,).
Additionally, monolayer adsorption capacities found from
the B-point method (for aerosil) and from the starting point
of the capillary hysteresis loop [11, 35] (for silica gel) are
given.

Figure 9 presents multilayer adsorption isotherms (black
points) of benzene (solid lines) and tetrachloromethane

A. W. Marczewski, A. Derylo-Marczewska and M. Jaroniec

(dashed lines) on macroporous silica gel KSK [33] (Fig. 9A)
and aerosil [32] (Fig. 9B). Desorption hysteresis loops are
denoted by white points and dotted (for CCL,) and dotted-
dashed (benzene) curves. A starting point of the hysteresis
loop (Fig. 9A) and B-point (Fig. 9B) for benzene are
indicated by stretches. The corresponding values for carbon
tetrachloride are calculated according to the ratio of
adsorbate molar volumes (see Table IV). In further cal-
culations, the mean values of LGD, BET and B-point
methods (for aerosil) and the starting point of the hysteresis
loop method value (for silica gel) were used (the BET values
for macroporous silica gel were admitted to be too low in
comparison with monolayer estimation for a suitable binary
liquid mixture —see below; additionally, for the porous
adsorbents, the BET method is not suitable [11, 35]).

Mean values for ‘142’ systems are equivalent to the »*
monolayer capacity values (see Table IV) obtained for
corresponding binary liquid mixtures using the Everett
equation [36] in its linear form: (x} x4/n%) vs. x%, where n¢ is

N

(n(a,/a;)

2

1
(n(py/p,)
Fig. 7. Mixture gas adsorption data [27] plotted according to linear equation
(34). Legend as in Fig. 6B.

1
m12 4

05 — -

Fig. 8. Uncorrelation effect of adsorption energies of binary gas mixture
components on the heterogeneity parameter m,, characterizing distribution

function of E,,. Model curves are drawn vs. ry, [eqn. (30) and o(m) from

Table 1] for single gas parameters from Table III. Legend as in Fig. 6B.

Table IV. Adsorption monolayer capacities (mmol/g) for single vapours and binary liquid mixtures obtained by using various

methods
aLGP ns
Adsorbent Adsorbate  aBET [equation (35)] 4, * &, &, (Everett)
Aerosil [32] Benzene (1) 0.599 0.601 0.60 0.600 0.567 0.5
(303 K) cCl, 2) 0.511 0.578 0.52°> 0.536 ' ’
Silica gel KSK Benzene (1) 1.08 — 1.38 1.38¢ 1.33 1.33
(293 K) [33] ccL @ 106 — 128" 128°

@ Point B method [11] (aerosil) or method utilizing the beginning of hysteresis loop point [11, 35] (silica gel).
b Calculated from the values for benzene adsorption according to the ratio of molar volumes of adsorbates.

¢ BET results were not taken into consideration.
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the surface excess. An analysis carried out according to the
results of our previous papers [18, 28—30] led to the conclusion
that the monolayer generalized-Freundlich equation [6, 18,
28-30] (see also Table I),

a; = am,i{[K_z,ixi/(l —-x)l/[1 +Kz,ixi/(l _xi)]}mi
X, = pt/ps,i

with the multilayer LGD [equation (35)] or BET correction
[6] were the best for single vapour adsorption data
description. The parameters of equation (36) for single
vapour adsorption are collected in Table V. In Figs. 10 and
11 the experimental single-vapour isotherms (black points) of
benzene (1) and tetrachloromethane (2) on aerosil and silica
gel KSK, respectively, are drawn in logarithmic coordinates
(Ina vs. Inx). White circles are drawn for the monolayer
adsorption values calculated according to the LGD multilayer
correction [equation (35)] [11, 34], i.e. Ina’ =In[a(l—x)/
(1 —x?/2)], whereas the dashed-dotted lines are drawn for the
monolayer adsorption estimated according to the BET model
[11] Ina’ = In[a(l1 —x)] (both plotted against In[x/(1 —x)]).
Solid lines are the theoretical GF multilayer isotherms
calculated according to equations (35) and (36) and para-

(36)

2
8
[
4
"
o 41
) e
'l'
"
~ d
0

o] 02 04 a6 02 04 06 08

0
x=p/ps
Fig. 9. Adsorption isotherms (@) of benzene (——) and carbon tetrachloride
(-——-) on (A) the wide porous silica gel KSK [33] and (B) aerosil [32].
Desorption capillary hysteresis loops are denoted by white points and dotted
lines (CCL,) and dotted-dashed lines (benzene). Characteristic points of the
isotherms are indicated by stretches; a in (mmol/g).

Ina ina'

-2t -2

-4, +4

2 0
(n[x/01-x)]

Fig. 10. Dependence Ina vs. Inx (——) for benzene (1) and carbon
tetrachloride (2) vapour adsorption on aerosil at 303 K [32] (@). White
points denote adsorption values calculated from the experimental points for
LDG multilayer correction [eqn. (35)], however the dashed-dotted lines are
drawn for the BET correction and the dashed ones are monolayer theoretical
isotherms for GF equation (36) (parameters from Table V).
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meters from Table V, whereas the dashed lines are the GF
monolayer adsorption isotherms [equation (36)]. For all
theoretical isotherms, a good correlation with the ex-
perimental data is observed (white points with dashed lines
and black points with solid lines).

Let us now discuss details of prediction of adsorption from
binary liquid mixtures for systems under consideration.
According to Myers and Sircar [37], constant K,, in
adsorption from a binary liquid mixture on a homogeneous
solid surface may be obtained from the suitable BET
constants of single vapour adsorption data

K, = I.Z/Kz,l

However, in the case of adsorption on heterogeneous solids,
we may write [6]

Km = _z,Z/Kx,l

(37a)

(37h)

Assuming that for two GF distributions r,, > 1 we get the
heterogeneity parameters m,, for the mixtures according to
the relationship in equation (27 b), whereas the surface phase
capacity »° is assumed to be equal to the average of the
mixture component monolayer capacities measured for
vapour adsorption (Table V). In Table VI the predicted
parameters of binary liquid mixture adsorption are collected.
The theoretically predicted isotherms were compared with
the experimental data by using a suitable linear form of GF
[equation (36)] for binary solutions:

In {(x5 )'/™/[1— (5 )]} = In K, +1n xf, (38a)
where
X5 = /nt+x, (385)

-8 -6 -4

lna

-4

-6

8 % = = 0
(n[x/11-x)]

Fig. 11. Single vapour adsorption on wide porous silica gel at 293 K [33].
Legend as in Fig. 10.

Table V. Parameters of GF equation (36) for benzene and
CCl, single vapour adsorption on aerosil [32] and silica gel
KSK [33), (a,, ; values are taken from Table 1V')

Adsorbent Adsorbate Ink,, m, a,,
Aerosil Benzene 1.20 0.634 0.600
(303 K) CCl, 0.59 0.769 0.536
Silica gel KSK Benzene 1.03 0.613 1.38
(293 K) CCl, 0.08 0.79 1.28
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Table VI. Comparison of parameters predicted from single

vapour adsorption data and experimental parameters of GF
equation (38 a) for the binary liquid mixture of benzene (1)

and carbon tetrachloride (2)

Predicted from single
vapour adsorption

exp. [eqn. (38a)]

Adsorbent A*=a, mp, InkK,, InK,,
Aerosil [32] 0.567 0.938 0.61 1.45
Silica gel KSK [33] 1.33 0.89 0.95 1.35
ozl A S B
o o] o [
o]
ne o o° 8 04
oY o
o1k °
Joz
L A A . 0
0 04 , 08 0 04 , 08
X X

Fig. 12. Benzene (1) + carbon tetrachloride (2) liquid mixture excess
adsorption isotherms (Q) on (A) aerosil [32] at 303 K; and (B) wide porous
silica gel KSK [33] at 293 K. Solid lines are theoretical GF excess isotherms
calculated according to the predicted 7°, m,, values and experimental In X,
values (see Table VI).

We found that the linearity was good and the slope close to
unity, though the predicted and experimental values [i.e.
from equation (38a)] of the equilibrium constants were
distinctly different (see Table VI). In Fig. 12, the experimental
excess isotherms for benzene (1)+carbon tetrachloride (2)
liquid mixture on aerosil at 303 K [32] (Fig. 12A) and silica
gel KSK at 293 K [33] (Fig. 12B) are compared with the
theoretical GF isotherms with the predicted »°, m,, values
and In K,, values found from equation (38a) (Table VI). A
good correlation is observed. Distinct discrepancy in the
predicted and observed In K,, may be caused by optimization
errors as well as by change of the bulk phase physical state
(from vapour to liquid) or by neglecting the differences in
molecular sizes [38]. However, as in the case of mixed-gas
adsorption prediction, the heterogeneity parameters were
predicted very well. Thus, the results obtained from analysis
of adsorption data confirm the usefulness of the SAED
method to predict the multicomponent adsorption equilibria
on energetically heterogeneous solid surfaces.

Conclusions

A new form of the integral equation for multicomponent
adsorption was proposed under the assumption of functional
relations between adsorption energies of all components. In
this way, the multiple integral was reduced to the single one
which might be solved analytically or numerically. This
equation enables simple prediction of adsorption from
multicomponent mixtures by using parameters characterizing
suitable single or binary systems. For some special cases, very
simple (exact or approximate) relationships between the
heterogeneity parameters of binary- and single-component
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adsorption systems were obtained. The theory was checked
by analysis of several experimental systems and theoretical
prediction of adsorption was shown.

Appendix A. The Henry constant and its relation to
adsorption energy distribution

Let us introduce the equilibrium constant written as [39].

K; =0,/[p(1-6,)] A1

Thus, the Henry constant K; may be expressed as

K, =1lim K, (A2)
»-0

From the integral equation (13) for single gas adsorption [(or
equation (1)] we may easily obtain

K,=K f exp [z(F)] dF = K- H(z) = K, J exp (E) x(E) dE
0 A
(A 3)

As it results from equation (A 3), the Henry constant K, is
not connected in a simple way with the maximal adsorption
energy, but it is defined by the mean adsorption energy E and
a function dependent on the energy distribution. An
analogous function, let us call it the Langmuir constant, can
be obtained for pressures tending to infinity:

K, = lim K, = I?/f exp[—z(F)] dF = k/H(—z)

PO

A4

For the symmetrical distribution functions y(E) we have
H(—z) = H(z); however, for asymmetrical we have H(z) *
H(—2z). When the function H(z) or H(—z) tends to infinity,
the corresponding isotherm equation does not obey Henry’s
law [equation (A 2)] or its analogue for high pressures
[equation (A 4)]. For example, the Gaussian (G) distribution
(see Table 1) gives H(z) = H(—z) = exp (¢*/2), when for LF
distribution H(—z) = H(—z) = + 0. The obtained values of
K, lie always between K and K,-exp(E,,,) values. Taking
this into account, the lateral interactions will affect only the
K., but not the K, value.

Appendix B. Temperature dependence of heterogeneity
parameters

Let us assume that energy distribution defined in terms of the
adsorption energy ¢ = ERT. (E = reduced energy) remains
invariant with temperature changes. Then the energy dis-
persion o,

ot = [ c-arxe ac as)
A
will be temperature independent quantity. Thus, the reduced

energy dispersion o [equation (12b)] will be expressed as
follows:

o(Ty) = 0./RT = o(T}) T,/ T, (A6)

Knowing the dependence of the heterogeneity parameter on
the reduced energy dispersion (see Table I), we can write
characteristic equations for different energy distribution




functions, for example for the Freundlich and Rudzinski’s
distributions

m(T) = m(T) T,/ T, (AT
whereas for LF, Téth and GF equations
[T = (L/ T {Im(T) > — 1} +1 (A%

For the Gaussian distribution, this dependence is defined
directly by equation (A 6).

Appendix C. Quality of approximation of the energy
distribution

In many cases, the experimental adsorption isotherms are
described by different theoretical equations involving het-
erogeneity effects with almost the same accuracy. Moreover,
even very advanced numerical methods of energy distribution
evaluation give apparently different solutions [6]. Our
method allows the possibility of estimation of these in-
accuracies and simple evaluation of the differences in discrete
and continuous distribution functions. Assuming that a
continuous distribution, having maximum and minimum
energies, is approximated by a discrete k-centred distribution
with the same mean energy and dispersion oy, = o, and
constant differences of centre energies (E,, ,—FE;, = (E,,,
—E )/k, i=1,...,k—1), thus from equation (22a, b) we
have

(A9)

T gis, cont/ Teont = 1/k
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Nomenclature

a adsorption amount

g monolayer adsorption amount calculated from
experimental value by using the BET or LGD
[equation (35)] models
monolayer capacity for gas adsorption
mol concentration
reduced energy of adsorption
integral distribution function of adsorption energy
function defined by equation (20)
function defined by equation (A 3)
parameter of discrete square-shaped energy dis-
tribution function
equilibrium constant of Langmuir-type [equation
(11)] and Everett [equation (15a)} local isotherms
entropy factor
heterogeneity parameter
adsorption excess
monolayer capacity for liquid adsorption
gas pressure
saturation pressure
correlation coefficient of energy distribution func-
tions y, and yx,

FpQmme p

=

3 &

NNy

-~
-
1Y
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gas constant

temperature

mol fraction; relative pressure

variable defined by equation (13)

adsorption energy

parameter of square-shaped energy distribution

energy integration region

(C) surface coverage

X differential distribution function of adsorption
energy

o reduced energy dispersion

o, energy dispersion

bold italic character denotes vector index (e.g. E, n, &, etc.)

DN RN

Superscripts
I bulk phase
s surface phase

overbar denotes mean value or its derivative (e.g. E, K,
etc.)

Subscripts

G index for quantity defined by equation A 1
H index for Henry constant [equation (A 2)]

i, J, k, n component index

) local variable

L index of constant defined by equation (A 4)
max maximum value

min minimum value

n number of mixture components

(n) index for n-component mixture

t global variable

w water index

(w) index for water dilute solution

x index for vapour equilibrium constant multiplied by

saturation pressure value [equation (35)] (analogous
to BET constant)

Composite subscripts

ij, in, jn difference of single-component variables (e, z, E)
ij ratio of single-component variables (x, K)
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